Critical Delays and Polynomial Eigenvalue Problems
نویسنده
چکیده
In this work we present a new method to compute the delays of delay differential equations (DDEs), such that the DDE has a purely imaginary eigenvalue. For delay differential equations with multiple delays, the critical curves or critical surfaces in delay space (that is, the set of delays where the DDE has a purely imaginary eigenvalue) are parameterized. We show how the method is related to other works in the field by treating the case where the delays are integer multiples of some delay value, i.e., commensurate delays. The parametrization is done by solving a quadratic eigenvalue problem which is constructed from the vectorization of a matrix equation and hence typically of large size. For commensurate delay differential equations, the corresponding equation is a polynomial eigenvalue problem. As a special case of the proposed method, we find a closed form for a parameterization of the critical surface for the scalar case. We provide several examples with visualizations where the computation is done with some exploitation of the structure of eigenvalue problems.
منابع مشابه
Eigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays
Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...
متن کاملA Jacobi-Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations
The critical delays of a delay-differential equation can be computed by solving a nonlinear two-parameter eigenvalue problem. The solution of this two-parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR-type method for solving such quadratic eigenvalue problem that only computes real valued critical delays, i.e...
متن کاملDetermination of a Matrix Function in the Form of f(A)=g(q(A)) Where g(x) Is a Transcendental Function and q(x) Is a Polynomial Function of Large Degree Using the Minimal Polynomial
Matrix functions are used in many areas of linear algebra and arise in numerical applications in science and engineering. In this paper, we introduce an effective approach for determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function from a degree of m and also function g can be a transcendental function. Computing a matrix function f(A) will be time- consu...
متن کاملChebyshev interpolation for nonlinear eigenvalue problems
This work is concerned with numerical methods for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. In particular, we focus on eigenvalue problems for which the evaluation of the matrix valued function is computationally expensive. Such problems arise, e.g., from boundary integral formulations of elliptic PDE-eigenvalue problems and typically exclude the use of establis...
متن کاملPalindromic Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations
Palindromic polynomial eigenvalue problems and related classes of structured eigenvalue problems are considered. These structures generalize the concepts of symplectic and Hamiltonian matrices to matrix polynomials. We discuss several applications where these matrix polynomials arise, and show how linearizations can be derived that reflect the structure of all these structured matrix polynomial...
متن کامل